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Abstract— Collective I/O is a widely used middleware technique that exploits I/O access correlation among multiple processes to
improve I/O system performance. However, most existing implementations of collective I/O strategies are designed and optimized
for homogeneous I/O systems. In practice, the homogeneity assumptions do not hold in heterogeneous parallel I/O systems, which
consist of multiple HDD and SSD-based servers and become increasingly promising. In this paper, we propose a heterogeneity-aware
collective-I/O (HACIO) strategy to enhance the performance of conventional collective I/O operations. HACIO reorganizes the order of
I/O requests for each aggregator with awareness of the storage performance of heterogeneous servers, so that the hardware of the
systems can be better utilized. We have implemented HACIO in ROMIO, a widely used MPI-IO library. Experimental results show that
HACIO can significantly increase the I/O throughputs of heterogeneous I/O systems.

Index Terms—Parallel I/O System; I/O Middleware; Collective I/O; Solid State Drive
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1 INTRODUCTION

D ATA access is one of the critical performance bottlenecks
of modern computer systems. Most of today’s high

performance computing (HPC) applications in scientific com-
puting and engineering simulation fields become increasingly
data-intensive [1]. To satisfy the enormous I/O requirements,
HPC clusters rely on parallel I/O systems to provide efficient
data accesses. However, when facing noncontiguous small
requests, parallel I/O systems still perform poorly even adding
more servers into the system [2]. Hence both new hardware
technologies and software strategies are required to boost I/O
system performance.

On the hardware side, HPC systems have begun to use
solid state drives (SSD) to provide data storage service [3].
Compared with HDDs, SSDs have much higher data transfer
rate and lower access latency. However, due to the high price
of SSD, it may not be cost-effective to build a large I/O system
completely based on SSDs. A hybrid parallel I/O system
comprised of both HDD servers (HServer) and SSD servers
(SServer), becomes increasingly attractive [4]–[6].

There are two typical strategies to exploit SSDs in a hybrid
I/O system. One strategy is to leverage SServers as a cache
layer of HServers [2]. While intuitive, this strategy is only
suitable for I/O systems where SServers can provide much
better aggregated I/O performance than HServers, by either
using high-end SSDs or deploying a large number of SServers.
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However this is not always available in reality. In contrast, the
other strategy puts SServers at the same level of HServers [4],
[7]. This strategy caters for the requirements where only a
small number of entry-level SSDs are deployed. In this study,
we focus on the hybrid I/O system adapting the later strategy.

On the software side, collective I/O [8] is the most popular
middleware method to optimize parallel I/O performance. As
shown in Figure 1, it shuffles data among multiple processes
and merges data requests into large contiguous ones before
sending them to underlying parallel file systems (PFS). How-
ever, although there are various methods devoted to opti-
mize the collective I/O operations [9]–[13], most approaches
are originally designed for homogeneous servers. With the
emergence of the hybrid I/O systems, existing collective-IO
strategies may largely compromise the system performance,
as we illustrate in Section 2.2.

In this paper, we propose HACIO, a new Heterogeneity-
Aware Collective I/O strategy to optimize the performance
of hybrid parallel I/O systems. HACIO enhances existing
strategies by reorganizing the request order of each aggrega-
tor with consideration of the performance disparity between
heterogeneous servers. By coordinating the request orders of
multiple aggregators, HACIO leads to a better load balance
among heterogeneous servers and hence makes a more ef-
ficient utilization of system hardware. Furthermore, HACIO
reorders requests only within each file domain, thus does not
introduce additional overhead in the data exchange phase while
other collective I/O optimization schemes might do.

To the best of our knowledge, this study is the first effort to
integrate storage heterogeneity into the data access optimiza-
tion at parallel I/O middleware layer. Specifically, we make
the following contributions.

• By analyzing the collective I/O operation process, we find
the traditional collective I/O strategies cannot fully utilize
the system hardware resource in a hybrid parallel I/O
system.

• We propose a heterogeneity-aware collective I/O strategy,
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Fig. 1. Collective I/O and the two-phase implementation.

which reorganizes request orders of file domains by
scheduling more requests to the same type of servers
in one circle, to mitigate the load imbalance among
heterogeneous servers.

• We implement the prototype of HACIO in MPI-IO li-
brary, and have conducted extensive tests to verify the
benefits of the HACIO scheme. Experiment results illus-
trate that HACIO can significantly improve I/O system
performance.

The rest of this paper is organized as follows. We introduce
the background and motivation in Section 2. We describe
the idea, design and implementation of HACIO in Section 3.
Performance evaluations of HACIO are presented in Section 4.
We introduce the important related work in Section 5. Finally,
we conclude the paper in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Collective I/O and Implementation

Instead of issuing I/O requests independently for each process,
collective I/O merges noncontiguous requests from multiple
processes and performs large contiguous I/O operations on
a subset of processes called aggregators. The benefits of
collective I/O are three-fold. First, it can filter redundant
requests from multiple processes. Second, it can produce large
contiguous accesses to a file region, leading to better disk
efficiency. Third, it can lessen the I/O overheads because of
the reduced number of file system calls.

The most popular implementation of collective I/O is two-
phase I/O in ROMIO [14], which is a high-performance
implementation of MPI (Message Passing Interface)-IO li-
brary. It consists of a communication phase and an I/O
phase. The number of processes participating in the I/O phase
(aggregators) can be specified by users. Figure 1 shows an
example of a two-phase collective I/O write operation for three
processes. We assume three processes participate in the I/O
phase and each aggregator has a sufficient memory buffer.
In the communication phase, each process communicates to
each other thus each process knows the aggregated span of
I/O requests from all processes. Then the aggregated span of
I/O requests is partitioned into multiple file regions (called file
domains), each of which is assigned to one aggregator. After
that, each aggregator sends data to requesting aggregators,
which write the data on behalf of it, and receives desired data
from other aggregators. In the I/O phase, each aggregator is
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Fig. 2. An example of conventional collective I/O strategy.
The I/O request order in each file domain is based on the
request’s logical address.

TABLE 1
Execution time of traditional collective I/O strategy

Cycle # HServer0 SServer0 HServer1 SServer1 Cost (T)
0 10 0 0 0 10
1 0 2 0 0 2
2 0 0 10 0 10
3 0 0 0 2 2

Sum 24

responsible for carrying out I/O requests belonging to its own
file domain.

There are two main user configurable parameters in the
ROMIO collective I/O: the number of aggregators and the
temporary buffer size. By default, ROMIO picks one process
as an aggregator at each computing node and sets the buffer
size to 4MB for each aggregator. These parameters can be
changed by users through the MPI-IO’s hint mechanism.
Generally, if the I/O size is too large to fit in a single buffer,
ROMIO will perform the two-phase I/O in several cycles to
complete the whole I/O operation [12]. Each aggregator first
calculates the length of its file domain, and then divides the
length by the allowed maximum buffer size to get the total
number of cycles needed.

2.2 A Motivating Example
As most existing collective I/O strategies reorganize requests
in a way that is oblivious to the heterogeneity of file servers,
they can largely degrade I/O system performance.

Figure 2 demonstrates a representative example of the
traditional collective I/O strategy and the data layout on hetero-
geneous file servers. We assume that the parallel program has
four processes (P0-3) and two of them act as the aggregators
(A0-1). Each process writes two logical blocks to the file
system. For example, P0 issues write requests to block 0 and
4, while P1 writes block 1 and 5. We assume the system
consists of two HServers and two SServers, and file blocks
are distributed on servers with the popular round-robin data
layout scheme.

By the default collective I/O strategy, the required file region
is evenly assigned to two file domains since there are two
aggregators. Aggregator A0 has a file domain containing block
0-3, while A1 has a file domain containing block 4-7, as shown



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2637353, IEEE
Transactions on Computers

SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS 3

File 

domain

Aggregator 0 Aggregator 1

0 1 2 3 4 5 6 7

Cycle 0: 0 4

Cycle 1: 1 5

Cycle 2: 2 6

3 7Cycle 3:

Fig. 3. The request order for each file domain with the
conventional collective I/O strategy. The load imbalance
issue among each I/O server occurs.

in the dash rectangle of Figure 2. Then each aggregator takes
multiple cycles to issue requests in its file domain depending
on the buffer size. We assume the buffer size is one block
then each aggregator needs four cycles to finish the collective
I/O operation. Traditional strategy naively selects the requests
according to the request logical address. For example, A0
first issues request for block 0, then for block 1 and 2, and
finally for block 3 in the four cycles. The detailed request
order of each aggregator is shown in Figure 3. During the
communication phase in each cycle, as all aggregators need
to be synchronized to make sure the buffer can be safely
used [10], the execution time of each cycle is determined
by the maximal time of all aggregators. Since SServers are
much faster than HServers, each cycle’s execution time is
determined by the execution time of the requests accessing
HServers. In specific, we assume each request on HServer and
SServer requires 5T and 1T time, Table 1 shows the I/O time
of each cycle. In Table 1, the I/O time of certain server is zero
because there is no data access on the server in the cycle. As
we can see that, the current strategy will lead to severe load
imbalance among servers, which would result in suboptimal
I/O performance.

There is an alternative approach to alleviate the load im-
balance problem by taking the data layout information into
consideration when deciding the I/O request orders of file
domains. As shown in Figure 4, by reorganizing the request
orders of file domains, each aggregator takes responsibility for
the data that resides in a different server in each cycle, which
avoids the access contention from multiple aggregators and in-
crease the I/O concurrency among servers. We call this strategy
as concurrency-aware collective I/O (CACIO) in the context of
this paper. The detailed I/O request order of CACIO for each
aggregator is shown in Figure 5. However, this strategy still
suffers from the load imbalance issue among servers due to
the heterogeneity between HServers and SServers. As shown
in Figure 5, although aggregator A1 only needs 1T to finish its
I/O request in the first cycle, it has to wait A0 which needs 5T
to finish the I/O request, because A0 and A1 are synchronized
to each other in each cycle. A similar situation happens for
A0 and A1 in terms of Cycle 1 to Cycle 3. Table 2 shows
the detailed I/O time of each cycle. We can see that while
CACIO can reduce the overall I/O time of the collective I/O
operation from 24T to 20T, it still offsets the benefits of the
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Fig. 4. Concurrency-aware collective I/O (CACIO). In
each cycle each aggregator issues requests to a different
server to increase I/O concurrency. For example, aggre-
gator A1 sends requests in the order of ”5,6,7,4” instead
of ”4,5,6,7” as in Figure 2. However, it still suffers from the
load imbalance issue among heterogeneous servers.
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Fig. 5. The request order for each file domain with the
alternative CACIO strategy. The load imbalance issue
among heterogeneous file servers exists.

parallel I/O system due to the ignorance of the heterogeneity
among different types of file servers.

3 HETEROGENEITY-AWARE COLLECTIVE I/O
STRATEGY

3.1 HACIO Design
As explained in the previous section, a limitation of the
current collective I/O designs is that they are unaware of
the performance heterogeneity among file servers, which can
lead to low utilization of system hardware. Our strategy takes
server performance features into consideration when determin-
ing collective I/O operations, together with file data layout
and file system information. As one collective I/O operation
may include multiple cycles and each cycle’s performance is
determined by the slowest aggregator, HACIO coordinately

TABLE 2
Execution time of the alternative collective I/O strategy

Cycle # HServer0 SServer0 HServer1 SServer1 Cost (T)
0 5 1 0 0 5
1 0 1 5 0 5
2 0 0 5 1 5
3 5 0 0 1 5

Sum 20
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Fig. 6. Heterogeneity-Aware Collective I/O (HACIO). It
reorganizes the request order for each file domain con-
sidering the heterogeneity of file servers and the physical
data layout of I/O requests.
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Fig. 7. The request order after reordering requests within
the file domain by HACIO. The requests on the same
type of servers are simultaneously carried out on different
servers to avoid load imbalance, thus reducing the overall
execution time of the collection I/O operation.

reorders the requests of all aggregators in each cycle. By
scheduling more requests from the same type of servers in
one cycle, HACIO alleviates the cost of each cycle and hence
increases the efficiency of the entire collective I/O call.

We continue to use the previous example to show our
design. As displayed in Figure 6, the request sequence in
the file domain of each aggregator is reordered depending
on the request’s server type. By doing so, all requests within
a cycle attempt to access one type of server, as shown in
Figure 7. Thus, less I/O time is spent on waiting for the
completion of requests on the slow HServers in the collective
I/O operation. For example, in HACIO all aggregators issue
requests on the same type of servers in Cycle 0, 1, 2 and 3.
In the conventional implementation, all aggregators need to
access requests on few servers within each cycle, leading to
severe access contention. In the proposed alternative CACIO
strategy, all aggregators need to carry out requests on two
types of servers. While increasing I/O concurrency than the
conventional strategy, it renders serious load imbalance (I/O
time) on heterogeneous servers. As previously noted, the cycle
where requests are issued to both HServers and SServers
will finish at the same time as the cycle where requests
only issued to HServers, since the cycle execution time is
determined by the longest request, which are the HServer
requests for both. The requests of Cycle 1 and Cycle 3

TABLE 3
Execution time of heterogeneity-aware collective I/O

strategy

Cycle # HServer0 SServer0 HServer1 SServer1 Cost (T)
0 5 0 5 0 5
1 0 1 0 1 1
2 5 0 5 0 5
3 0 1 0 1 1

Sum 12

of HACIO are all physically located on SServers, thus the
quick access time of SServers can be used to diminish the
total collective I/O execution time, because these cycles can
execute considerably faster than all cycles of the conventional
collective I/O implementation and the mentioned alternative
implementation. Thus, HACIO utilizes minor reordering of
the data requests to create more cycles including requests on
homogeneous servers, which can exploit the merits of high
performing SServers. Table 3 shows the I/O execution time of
each cycle in HACIO strategy for this example. We can see
that HACIO improves the I/O performance by 50% and 40%
respectively over the conventional and alternative collective
I/O implementation.

Notice that our strategy does not change the file domain
partitioning phase in the traditional strategy, but only reorders
the requests within each file domain. Hence it does not result in
additional communication overhead because processes do not
need to exchange requests. The additional cost of reorganizing
the data within each aggregator’s file domain is minuscule
as this is a simple computation as shown in Subsection 3.2.
Also each aggregator must determine what set of requests it
must send, but again this is a slight communication overhead
compared to the performance benefits of storage performance
awareness.

3.2 Implementation
We implement the proposed HACIO strategy in the current
MPI-IO library ROMIO [14]. To enable the proposed strategy,
we first need to obtain the data layout information in the
MPI process in the computing nodes. Fortunately, the file
layout information, such as stripe size, stripe factor, and
distribution policy, can be easily accessed using the underlying
parallel file system’s APIs. For example, this information is
readily available in many commonly used parallel file systems,
including PVFS2 [15], Lustre [16], and GPFS [17].

After obtaining the layout knowledge, all aggregators par-
tition file domains and rearrange requests follow the HACIO
design in each collective I/O operation. The request order of
each aggregator is the core difference from the conventional
collective I/O implementation. In the current collective I/O
implementation in the MPI-IO library, the aggregator contains
an array indexed by process rank. The aggregator sequentially
walks through this array adding the offset and length pairs of
I/O requests to the buffer. HACIO proposes a heterogeneity-
aware request reordering algorithm that hops through this same
array in a manner which all requests stored on a certain server
are fulfilled before fulfilling the other server’s requests.
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Algorithm 1: Heterogeneity-Aware Request Reordering
Input : Processes number: p ; The current aggregator rank: a ;

HServer number: hn; SServer number: sn; Request
arrays in this aggregator’s file domain indexed by
process rank: req[0], req[1], ..., req[p− 1] ; Offsets of
a request indexed by request number:
of [0], of [1], ..., of [req.count− 1] ;

Output: Request sequence for this aggregator: S
1 /*Adjust the request order according to the server type to reduce

load imbalance, type==0 indicates the server is an HServer*/
2 for (type = 0; type < 2; type++) do
3 for (i = 0; i < p; i++) do
4 for (j = 0; j < req[i].count; j ++) do
5 if (type == Server type(req[i].of [j])) then
6 number ← Server number(req[i].of [j])

/*Add original requests to the temporal
sequence T */ ;

7 if (req[i].of [j] not in T [type][number])
then

8 append req[i].of [j] to T [type][number] ;
9 end

10 end
11 end
12 end
13 end
14 /*Adjust the request order according to the server number to

increase I/O concurrency*/ ;
15 for (type = 0; type < 2; type++) do
16 if (type == 0) then
17 count← hn
18 end
19 else
20 count← sn
21 end
22 for (i = 0; i < count; i++) do
23 number ← (a+ i)%count ;
24 append T [type][number] to S ;
25 end
26 end

Algorithm 1 shows the heterogeneity-aware request determi-
nation process of each aggregator. The goal of this algorithm is
to reorder the I/O requests of each aggregator so that requests
from all aggregators have a high priority to access the same
type of servers in each cycle. To this end, the algorithm groups
original requests of each aggregator according to the server
type into two sets: HServer requests and SServer requests.
It first inserts HServer requests into the temporal sequence
S (line 3 to 13) then inserts SServer requests. In this way,
the load imbalance issue among different types of servers can
be alleviated. Furthermore, the algorithm adjusts the request
order for the same type of requests based on the server number
where the request resides and the current aggregator rank (line
22 to 25). By using a modulo operation, the algorithm tries to
make aggregators issue requests to more of the same type
of servers to increase I/O concurrency. The main addition
our algorithm provides to the conventional implementation
is line 5 and line 6. We pass the offset and length pair
to functions called Server type() and Server number(),
which use parallel file system and hardware knowledge to
return the server type (0 for HServer and 1 for SServer) and
server number (0 to hn − 1 for HServer and 0 to sn − 1

for SServer) respectively. In a way, the two functions are the
connection between the parallel file system and the storage
layer in the parallel I/O stack. Thus, depending on the server
type and server number, the algorithm will either append this
request to the optimal request order or wait until the Type
and number value changes.

This decision process will allow all of the requests lo-
cated on the same type of storage servers to be grouped
together and requests located on the different servers to be
issued concurrently. When conducting collective I/O opera-
tions, the aggregator can carry out I/O requests by accessing
S sequentially. In this way, the aggregator will perform I/O
operations on all servers of the same type before moving to a
different type of server. Compared with conventional method,
this solution can reduce the load imbalance and increase
I/O concurrency among servers and thus likely improves the
system performance.

In addition to the easily obtained inputs, our algorithm is
extremely efficient, scaling linearly with the number of re-
quests. Granted the original ordering strategy is a simple O(1)
computation, our method provides additional, yet minimal,
computation overhead to drastically reduce execution time. For
each aggregator, our algorithm creates the order of requests by
iterating through each original request and positioning, based
on its physical data location, the request into its appropriate
position in the new request order.

4 PERFORMANCE EVALUATION

We implemented the HACIO strategy and the alternative CA-
CIO strategy in ROMIO [14], a widely used MPI-IO library. In
this section we compare HACIO with the existing ROMIO’s
collective I/O implementation (ROMCIO hereafter) and the
alternative CACIO strategy. We first briefly describe the exper-
imental environment and then present the experimental results.

4.1 Experimental Setup
We conduct the experiments on a 33-node SUN Fire Linux
cluster. This cluster is composed of one Sun Fire X4240
head node, with dual 2.7 GHz Opteron quadcore processors
and 8GB memory, and 32 Sun Fire X2200 compute nodes
with dual 2.3GHz Opteron quad-core processors and 8GB
memory. Among the computing nodes, 16 nodes are equipped
with OCZ-REVODRIVE 100GB SSD, and each of the rest
computing nodes has a 250GB SATA hard drive. All 33
nodes are connected with Gigabit Ethernet. The operating
system is Ubuntu 13.04, the MPI library is MPICH2-1.4.1p1,
and the parallel file system is OrangeFS 2.8.6. Among the
available nodes, we select 16 as client computing nodes,
eight as HServers, and eight as SServers. By default, the
heterogeneous OrangeFS file system is built on six HServers
and two SServers. We run each test five times and the average
is used as the performance result.

4.2 IOR Benchmark
IOR is a popular parallel file system benchmark developed at
Lawrence Livermore National Laboratory [18]. It can mimic



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2637353, IEEE
Transactions on Computers

SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS 6

0

100

200

300

400

500

600

Interleaved Random

I/
O

 T
h

ro
u

g
h
p

u
t 

(M
B

/S
ec

) ROMCIO CACIO HACIO

(a) Read throughput

0

100

200

300

400

500

600

Interleaved Random

I/
O

 T
h

ro
u

g
h
p

u
t 

(M
B

/S
ec

) ROMCIO CACIO HACIO

(b) Write throughput

Fig. 8. Throughputs of IOR with different type of I/O
operations.
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Fig. 9. Throughputs of IOR with different request sizes.

many I/O access patterns of real applications by changing
various parameters. We use the MPI-IO interface to test the
collective I/O operations. Unless otherwise specified, IOR runs
with 32 processes, each of which performs I/O operations on a
shared 16GB parallel file with request size of 256KB. We vary
application characteristics and server configurations to verify
the effectiveness of the proposed strategy.

4.2.1 Different Type of I/O Operations
First we compare HACIO against ROMCIO and CACIO
under different types of I/O operations. Figure 8 shows the
throughputs of IOR under interleaved and random read and
write requests. We observe that HACIO outperforms ROMCIO
and CACIO for both read and write operations. Compared to
ROMCIO, HACIO improves read performance up to 58.5%,
and write performance up to 61.1%. In comparison with
CACIO, HACIO has a read improvement up to 23.6% , and
write improvement up to 39.3%. CACIO exceeds ROMCIO
because it considers the physical data layout to increases
concurrency while ROMCIO determines the request order
only based on logical data information. However, HACIO has
superior performance than CACIO because it further considers
the performance disparity among heterogeneous servers.

4.2.2 Different Request Sizes
We also examine the I/O performance of HACIO, ROMCIO
and CACIO with different request sizes. In these tests, the
request size of IOR is varied from 32KB to 1024KB. As
Figure 9 shows, HACIO can achieve better I/O performance
compared to ROMCIO and CACIO with the increasing size
of file requests. Compare to ROMCIO and CACIO, HACIO
improves the read and write performance up to 197.7% and
260.6% with request size of 32KB, and up to 46.8% and 56.9%
with request size of 1024KB. As the request size increases,
HACIO shows better I/O performance. This is because large
requests causes the file domain size to also increase, thus there
are more requests in each file domain to be reorganized to
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Fig. 10. Throughputs of IOR with different numbers of
processes.
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Fig. 11. Throughputs of IOR with different buffer sizes.

better utilize the hardware resources. These results validate
that HACIO can choose appropriate request order to improve
the heterogeneous I/O system performance as the request size
varies.

4.2.3 Different Number of Processes
Next we measure and compare the performance of the three
collective I/O strategies with respect to different number of
processes. The IOR benchmark is executed under the inter-
leaved access patterns with 16, 64 and 128 processes. As
displayed in Figure 10, HACIO improves the read performance
by 12.5%, 26.1%, and 39.4% respectively with 16, 64 and
128 processes, and write performance by 13.1%, 24.4%, and
47.8%, compared to ROMCIO and CACIO. When the process
number is small, the system has a higher I/O bandwidth. As
the number of processes increases, the performance of the
heterogeneous PFS decreases because more processes lead
to severe I/O contention in HServers and SServers, which
degrades the overall system performance. However, in each
case, HACIO is constantly better than ROMCIO and CACIO
even when the number of process is 128. This is because
HACIO considers the storage heterogeneity in the reordering
the requests in each file domain, which can reduce I/O idle
time of fast SServers. These results show that HACIO scales
excellently with the number of I/O processes.

4.2.4 Different Buffer Sizes
Then we test the I/O performance with different buffer sizes.
We change the collective I/O buffer size from 1MB to 8MB
and run IOR with interleaved accesses. From Figure 11, we
observe that HACIO can improve I/O performance over the
other two strategies. When the buffer size is small, the system
has a low I/O performance because it needs more cycles to
carry out the I/O request within a collective I/O operation,
which means less hardware resources utilization. However,
HACIO is still better than ROMCIO and CACIO because
it reorders the requests based on the storage heterogeneity



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2637353, IEEE
Transactions on Computers

SUBMISSION TO IEEE TRANSACTIONS ON COMPUTERS 7

0

100

200

300

400

500

600

Interleaved

read

Random

read

Interleaved

write

Random

write

I/
O

 T
h

ro
u

g
h
p

u
t 

(M
B

/S
ec

)

ROMCIO CACIO HACIO

(a) 7HServers : 1SServers

0

100

200

300

400

500

600

Interleaved

read

Random

read

Interleaved

write

Random

write

I/
O

 T
h

ro
u

g
h
p

u
t 

(M
B

/S
ec

)

ROMCIO CACIO HACIO

(b) 4HServers : 4SServers

Fig. 12. Throughputs of IOR with different server configu-
rations.

and aims to improve I/O concurrency on file servers. As
the number of buffer size increases, the system performance
increases because large requests enhance the server storage
performance. We can also see that, as the buffer size increases,
the improvement of HACIO is still better than CACIO strategy,
which is mainly because HACIO can reduce the idle I/O time
of SServers due to the better load balance it provides.

4.2.5 Different Server Configurations
Finally, we test the I/O performance with different server con-
figurations. We varied the numbers of HServers and SServers
with the ratios of 7:1 and 4:4. Figure 12 shows the I/O
bandwidth using the two collective I/O strategies. When the
ratio of HServers to SServers is 7:1, we find that HACIO
nearly has the same performance as CACIO strategy. HACIO
can not bring large performance improvement because there is
only one SServer so that the load imbalance among HServers
and SServer is hard to alleviate. In this case, HACIO degrades
to the CACIO strategy. As we can see, the performance gap
is marginal, showing that the additional algorithm overhead
of HACIO is small and negligible compared to CACIO. As
the number of SServers increases, the system performance
increases and HACIO has a large performance improvement.
This is because there are more same type of servers to provide
more chances for HACIO to get rid of the load imbalance
among heterogeneous servers to optimize I/O performance.

4.3 HPIO Benchmark

HPIO is a benchmark designed by Northwestern University
and Sandia National Laboratories to systematically evaluate
I/O performance [19]. This benchmark can generate various
data access patterns by changing three parameters: region
count, region spacing, and region size, which indicates the
number of requests, the distance between two requests, and
the request size respectively. The region spacing is used to
generate noncontiguous data access patterns. In our experi-
ment, the number of process is set to 16 processes; the region
count is set to 8192; the region size is set to 64KB; and region
spacing is varied from 4KB to 32KB.

As shown in Figure 13(a), HACIO can increase the read
I/O throughput over the other two schemes by up to 23.9%,
18.8%, 19.3%, and 17.5% respectively, which means that
HACIO is effective with respect to HPIO benchmark. For write
operations, the performance has similar trend as presented in
Figure 13(b). This also confirms the adaptability of HACIO;
when the application’s I/O accesses have a poorer throughput
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Fig. 13. Throughputs of HPIO with different region spac-
ings.

(due to the poorer data sequential locality among consecutive
accesses), more benefit is gained by using HACIO.

4.4 BTIO Benchmark
We also use the BTIO benchmark [20] from the NAS Par-
allel Benchmark (NPB3.3.1) suite to evaluate the proposed
collective I/O strategy. BTIO represents a typical scientific
application with interleaved intensive computation and I/O
phases, and it uses a Block-Tridiagonal (BT) partitioning
pattern to solve the three-dimensional compressible Navier-
Stokes equations.

We configure BTIO benchmark with the Class C and full
subtype, which means we write and read a total size of
6.64GB data with collective I/O calls. We choose 16, 36,
and 64 compute processes to conduct the experiments because
BTIO requires a square number of processes. All the processes
accesses a share parallel file on the heterogeneous OrangeFS
file system. In the experiments, the collective buffer size is set
to 4MB, and the output data are distributed across six HServers
and two SServers.

From Figure 14, we observe that HACIO achieves better
throughput and scalability compared to ROMCIO and CACIO.
Compared to ROMCIO, HACIO achieves 49.6%, 51.6%, and
60.3% performance improvement with respect of 16, 36, 64
processes. In comparison with CACIO, HACIO also shows
obvious performance improvements. The experimental results
confirm that HACIO design can substantially improve the I/O
performance of the heterogeneous file system.

4.5 Real Application
Finally, we evaluated HACIO with a real application, ‘Anony-
mous LANL App 2’ [21]. In these tests, the application ran
with 512 processes, each issuing collective I/O requests in
a non-uniform way at different parts of a shared file. The
data accesses of this application were replayed according to
the I/O trace to simulate the same data access scenario. We
measured the performance of the application with HACIO
strategy against ROMCIO and CACIO strategy. Figure 15
reports the results of the application under the three collective-
I/O strategies. Similar to the previous tests, HACIO can
improve the performance by up to 26.7% compared to the
other two policies.

All the experiment results have confirmed that the proposed
HACIO strategy is a promising method to enhance the collec-
tive I/O technique for parallel I/O systems with heterogeneous
servers. Hence it helps parallel I/O systems to provide efficient
I/O service for data-intensive HPC applications.
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5 RELATED WORK
Collective I/O is the most widely used I/O middleware ap-
proach to boost I/O performance for multiple processes of a
parallel program [8]. It merges small noncontiguous requests
of multiple processes and performs large contiguous I/O oper-
ations on a subset of processes called aggregators. Traditional
collective I/O strategies are based on request logical addresses,
Resonant I/O [10] is a physical layout-aware collective I/O
strategy, which ensures each disk to serve file requests in an
order consist with the offsets of the requested data in the file
domain. Chen et al. [11] propose another layout-aware col-
lective I/O, named LACIO, which rearranges the partitions of
file domains to make each disk to serve file requests from less
aggregators, to reduce access contentions and increase data
locality. Wang et al. [12] propose an iteration-based collective
I/O strategy, which reorganizes I/O requests within each file
domain instead of coordinating requests across file domains to
reduce shuffle cost and disk I/O contention. To alleviate lock
contentions, Liao et al. [13] propose a file partition method
that allows file domains to be aligned to the lock boundary
of file systems. Dickens et al. [22] propose to minimize the
number of I/O nodes with which an aggregator communicates
to increase the collective I/O performance. Chaarawi et al. [9]
introduce an algorithm to select the number of aggregators
based on consideration of process topology, file view, and data
amount in a collective I/O operation.

Although various optimizing approaches exist, they are
designed for homogeneous I/O systems. In contrast, HACIO
aims to optimize collective I/O operations in heterogeneous
parallel I/O systems with different types of servers.

6 CONCLUSION
We have proposed a heterogeneity-aware collective I/O strat-
egy, HACIO, for heterogeneous I/O systems. The key idea
of HACIO is to reorder I/O requests in each file domain with
awareness of storage performance disparity among various file
servers. In essence, HACIO provides a better request stream
reorganization that matches both data access characteristics of
applications and storage capabilities of underlying file servers.
We have developed and presented the proposed HACIO col-
lective I/O strategy in ROMIO. Experimental results show that
HACIO outperforms the existing collective I/O strategies.
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